433 research outputs found

    Cooperative Gating and Spatial Organization of Membrane Proteins through Elastic Interactions

    Get PDF
    Biological membranes are elastic media in which the presence of a transmembrane protein leads to local bilayer deformation. The energetics of deformation allow two membrane proteins in close proximity to influence each other's equilibrium conformation via their local deformations, and spatially organize the proteins based on their geometry. We use the mechanosensitive channel of large conductance (MscL) as a case study to examine the implications of bilayer-mediated elastic interactions on protein conformational statistics and clustering. The deformations around MscL cost energy on the order of 10 kT and extend ~3nm from the protein edge, as such elastic forces induce cooperative gating and we propose experiments to measure these effects. Additionally, since elastic interactions are coupled to protein conformation, we find that conformational changes can severely alter the average separation between two proteins. This has important implications for how conformational changes organize membrane proteins into functional groups within membranes.Comment: 12 pages, 6 figures, 63 references, submitted to PLoS Computational Biolog

    Ab Initio Prediction of Transcription Factor Targets Using Structural Knowledge

    Get PDF
    Current approaches for identification and detection of transcription factor binding sites rely on an extensive set of known target genes. Here we describe a novel structure-based approach applicable to transcription factors with no prior binding data. Our approach combines sequence data and structural information to infer context-specific amino acid–nucleotide recognition preferences. These are used to predict binding sites for novel transcription factors from the same structural family. We demonstrate our approach on the Cys(2)His(2) Zinc Finger protein family, and show that the learned DNA-recognition preferences are compatible with experimental results. We use these preferences to perform a genome-wide scan for direct targets of Drosophila melanogaster Cys(2)His(2) transcription factors. By analyzing the predicted targets along with gene annotation and expression data we infer the function and activity of these proteins

    Accurate SAXS Profile Computation and its Assessment by Contrast Variation Experiments

    Get PDF
    AbstractA major challenge in structural biology is to characterize structures of proteins and their assemblies in solution. At low resolution, such a characterization may be achieved by small angle x-ray scattering (SAXS). Because SAXS analyses often require comparing profiles calculated from many atomic models against those determined by experiment, rapid and accurate profile computation from molecular structures is needed. We developed fast open-source x-ray scattering (FoXS) for profile computation. To match the experimental profile within the experimental noise, FoXS explicitly computes all interatomic distances and implicitly models the first hydration layer of the molecule. For assessing the accuracy of the modeled hydration layer, we performed contrast variation experiments for glucose isomerase and lysozyme, and found that FoXS can accurately represent density changes of this layer. The hydration layer model was also compared with a SAXS profile calculated for the explicit water molecules in the high-resolution structures of glucose isomerase and lysozyme. We tested FoXS on eleven protein, one DNA, and two RNA structures, revealing superior accuracy and speed versus CRYSOL, AquaSAXS, the Zernike polynomials-based method, and Fast-SAXS-pro. In addition, we demonstrated a significant correlation of the SAXS score with the accuracy of a structural model. Moreover, FoXS utility for analyzing heterogeneous samples was demonstrated for intrinsically flexible XLF-XRCC4 filaments and Ligase III-DNA complex. FoXS is extensively used as a standalone web server as a component of integrative structure determination by programs IMP, Chimera, and BILBOMD, as well as in other applications that require rapidly and accurately calculated SAXS profiles

    Positive and Negative Design in Stability and Thermal Adaptation of Natural Proteins

    Get PDF
    The aim of this work is to elucidate how physical principles of protein design are reflected in natural sequences that evolved in response to the thermal conditions of the environment. Using an exactly solvable lattice model, we design sequences with selected thermal properties. Compositional analysis of designed model sequences and natural proteomes reveals a specific trend in amino acid compositions in response to the requirement of stability at elevated environmental temperature: the increase of fractions of hydrophobic and charged amino acid residues at the expense of polar ones. We show that this “from both ends of the hydrophobicity scale” trend is due to positive (to stabilize the native state) and negative (to destabilize misfolded states) components of protein design. Negative design strengthens specific repulsive non-native interactions that appear in misfolded structures. A pressure to preserve specific repulsive interactions in non-native conformations may result in correlated mutations between amino acids that are far apart in the native state but may be in contact in misfolded conformations. Such correlated mutations are indeed found in TIM barrel and other proteins

    Classifying Variants of Undetermined Significance in BRCA2 with Protein Likelihood Ratios

    Get PDF
    Background: Missense (amino-acid changing) variants found in cancer predisposition genes often create difficulties when clinically interpreting genetic testing results. Although bioinformatics has developed approaches to predicting the impact of these variants, many of these approaches have not been readily applicable in the clinical setting. Bioinformatics approaches for predicting the impact of these variants have not yet found their footing in clinical practice because 1) interpreting the medical relevance of predictive scores is difficult; 2) the relationship between bioinformatics “predictors” (sequence conservation, protein structure) and cancer susceptibility is not understood.Methodology/Principal Findings: We present a computational method that produces a probabilistic likelihood ratio predictive of whether a missense variant impairs protein function. We apply the method to a tumor suppressor gene, BRCA2, whose loss of function is important to cancer susceptibility. Protein likelihood ratios are computed for 229 unclassified variants found in individuals from high-risk breast/ovarian cancer families. We map the variants onto a protein structure model, and suggest that a cluster of predicted deleterious variants in the BRCA2 OB1 domain may destabilize BRCA2 and a protein binding partner, the small acidic protein DSS1. We compare our predictions with variant “re-classifications” provided by Myriad Genetics, a biotechnology company that holds the patent on BRCA2 genetic testing in the U.S., and with classifications made by an established medical genetics model [1]. Our approach uses bioinformatics data that is independent of these genetics-based classifications and yet shows significant agreement with them. Preliminary results indicate that our method is less likely to make false positive errors than other bioinformatics methods, which were designed to predict the impact of missense mutations in general.Conclusions/Significance: Missense mutations are the most common disease-producing genetic variants. We present a fast, scalable bioinformatics method that integrates information about protein sequence, conservation, and structure in a likelihood ratio that can be integrated with medical genetics likelihood ratios. The protein likelihood ratio, together with medical genetics likelihood ratios, can be used by clinicians and counselors to communicate the relevance of a VUS to the individual who has that VUS. The approach described here is generalizable to regions of any tumor suppressor gene that have been structurally determined by X-ray crystallography or for which a protein homology model can be built

    Characterization of Protein Hubs by Inferring Interacting Motifs from Protein Interactions

    Get PDF
    The characterization of protein interactions is essential for understanding biological systems. While genome-scale methods are available for identifying interacting proteins, they do not pinpoint the interacting motifs (e.g., a domain, sequence segments, a binding site, or a set of residues). Here, we develop and apply a method for delineating the interacting motifs of hub proteins (i.e., highly connected proteins). The method relies on the observation that proteins with common interaction partners tend to interact with these partners through a common interacting motif. The sole input for the method are binary protein interactions; neither sequence nor structure information is needed. The approach is evaluated by comparing the inferred interacting motifs with domain families defined for 368 proteins in the Structural Classification of Proteins (SCOP). The positive predictive value of the method for detecting proteins with common SCOP families is 75% at sensitivity of 10%. Most of the inferred interacting motifs were significantly associated with sequence patterns, which could be responsible for the common interactions. We find that yeast hubs with multiple interacting motifs are more likely to be essential than hubs with one or two interacting motifs, thus rationalizing the previously observed correlation between essentiality and the number of interacting partners of a protein. We also find that yeast hubs with multiple interacting motifs evolve slower than the average protein, contrary to the hubs with one or two interacting motifs. The proposed method will help us discover unknown interacting motifs and provide biological insights about protein hubs and their roles in interaction networks
    corecore